
XCS for Robust Automatic Target Recognition 
B. Ravichandran and Avinash Gandhe  

Scientific Systems Company Inc.  
500 West Cummings Park, Suite 3000  

Woburn, Massachusetts 01801  
+1 (781) 933-5355 

{ravi,avinash}@ssci.com 

R. E. Smith 
Faculty of Computing, Engineering, and Mathematical 

Sciences 
University of The West of England 

Bristol, United Kingdom 
+44 117 330 6224 

robert.smith@uwe.ac.uk 
 

ABSTRACT 
A primary strength of the XCS approach is its ability to create 
maximally accurate general rules. In automatic target recognition 
(ATR) there is a need for robust performance beyond so-called 
standard operating conditions (SOCs, those conditions for which 
training data is available) to extended operating conditions 
(EOCs, conditions of known targets that cannot be foreseen and 
trained for). EOCs include things like vehicle-specific variations, 
environmental effects (mud, etc.), unanticipated viewing angles, 
and articulation of components of the target (hatches, turrets, 
etc.). This paper presents experiments where XCS addresses 
structural generalization over global and local features normally 
used in ATR classification. In many SOCs, these features are 
adequate for target recognition. Our goal with XCS is to form 
generalized rules that utilize these features for effective ATR in 
EOCs. Results show that XCS is effective in this generalization 
task. Conclusions and future directions for research are discussed.   

Categories and Subject Descriptors 
J.7 [COMPUTERS IN OTHER SYSTEMS] Military. 

General Terms 
Algorithms, Design, Experimentation. 

Keywords: 
Automatic target recognition, extended operating conditions, 
structural learning, generalization 

1. INTRODUCTION 
Automatic Target Recognition (ATR) spans a large space that 
includes targets, sensors, and the environment. Progress in the 
field can be sampled in review articles by Nagy [15] in 1968, 
Kanal [10] in 1974, Bhanu [2], and Jain [9] in 2000. There are 
mny successful applications of pattern recognition and ATR. 
However, as evidenced by recent technology demonstrations such 
as the DARPA MSTAR program, and as is often the case in 
military applications, the conditions of operation differ from those 

 

 from training and are not anticipated. Subsequently there is 
dramatic reduction in the related ATR performance which does 
not degrade gracefully. These are referred to as Extended 
Operating Conditions (EOC) [11] and the related technical 
challenge is the development of robust ATR systems [16][21].  
Addressing this technical challenge, as shown in Figure 1, the 
development of a robust ATR system for EOCs has become a 
confluence of techniques that include (1) data fusion (2) 
performance evaluation (3) modeling and (4) learning. Data 
Fusion arises from the premise that more than one type of sensor 
or information can be used for robust ATR. Related challenges 
include sensor management, data registration etc. Performance 
Evaluation assesses ATR performance independent of specific 
target, sensor, and environmental conditions and to predict ATR 
performance or establish performance bounds. Modeling is a 
complement to field data and a surrogate to data that cannot be 
collected and is based on the rendering of targets, sensors, and the 
environment. Learning addresses the challenge of finding a 
composite or generalized global model(s) that can account for the 
variation between the training and testing sets in EOCs.  

 

 
Figure 1: A System for Robust ATR 

The focus of this work is the development and demonstration of 
learning for Robust ATR. In this context, learning is the 
acquisition of general rules that extend to unforeseen EOCs. 
In order to put our ideas and work in context, consider:  

• The acquisition of rules and heuristics, either offline on 
online. We will refer to this as the structural learning 
problem.  

• The adjustment of action selection parameters, 
thresholds, and other parameters in the reasoning and 

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. 
GECCO’05, June 25-29, 2005, Washington, DC, USA. 
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00. 

1803



ATR system. We will refer to this as the parameter 
learning problem.  

These two complementary problems are discussed as general 
aspects of any machine learning system and then specifically 
addressed as part of a robust ATR system.  
Within the context of ATR, learning [4] that only considers the 
parameter learning problem (adaptive adjustment of utility 
parameters) will be inherently burdened by failure to effectively 
address the structural learning problem. However, if the structural 
learning problem is adequately addressed, one can employ 
multiple models and features in generalized contexts for ATR 
across multiple EOCs, extending to unforeseen situations. We 
believe this is the most promising direction for using machine 
learning to enhance ATR robustness.  
The primary innovation of this work is the development of an 
automated way of developing (heuristic) inference rules that can 
draw on multiple models and multiple feature types to make more 
robust ATR decisions.  
The key realization is that this “meta learning” problem is one of 
structural learning, that can be conducted independently of 
parameter learning associated with each model and feature based 
technique, and more effectively draw on the strengths of all such 
techniques, and even information from unforeseen techniques. We 
accomplish this by using robust, genetics-based machine learning 
for the ill-conditioned combinatorial problem of structural rule 
learning, while using statistical and mathematical techniques for 
parameter learning.  
In the sections that follow, Section 2 presents an overview of 
machine learning. In particular it highlights two interrelated 
learning problems: structural learning and parameter learning. It 
then describes Learning Classifier Systems (LCS) as an approach 
for the structural learning problem and then describes XCS as a 
method for implementing the LCS.  
Section 3 describes the LCS-based ATR system developed during 
the course of this project.  
Section 4 describes the results of applying the LCS based ATR 
system to a number of standard operating and extended operating 
conditions.  
Section 5 provides a summary and conclusion of this work.   

2. LEARNING FOR EOCs in ATR 
This section presents an overview of machine learning. In 
particular it highlights two interrelated learning problems: 
structural learning and parameter learning. It then describes 
Learning Classifier Systems (LCS) as an approach for the 
structural learning problem and then describes XCS as a method 
for implementing the LCS.  

2.1 A Categorization of Machine Learning 
Machine learning is categorized by two interrelated problems, 
structural learning problem and parameter learning problem. 
While these terms are most common in the discussion of Bayesian 
networks, these two problems are present in all typical machine 
learning approaches. However they are seldom recognized as 
ubiquitous.  
The structural learning problem profoundly impacts the 
complexity of the parameter learning problem. The number of 

parameters to tune typically expands exponentially with the 
addition of the structural elements.  
The parameter learning problem is typically well treated by 
straightforward update techniques founded in statistics and the 
calculus. The structural learning problem is, in general, an ill-
conditioned, combinatorial optimization problem. However, the 
computational burden of overcoming the structural learning 
problem is often great: an appropriate structure can lead to a 
computationally efficient implementation of complex, effective 
knowledge that can be re-used. Moreover, the selection of an 
appropriate structure can greatly increase the speed and 
effectiveness of parameter learning.  
In all training-data-driven machine learning approaches, some 
form of the following procedure is used:  
1. Initialize structural elements of the knowledge 

representation (randomly, or based on a priori 
information)  

2. Initialize parameters of those elements (randomly, or 
based on a priori information)  

3. Present one of more items of training data to the 
algorithm at a time. For each such set:  

(a) Identify a subset of structural elements that are active 
for this training case.  

(b) Update the parameters of the active elements, typically 
by:  

i.Determining a candidate solution based on the active 
elements  

ii.Receiving feedback on the quality of this candidate 
solution (supervision or reinforcement)  

iii.Updating parameters based on this feedback  
iv.Repeating until some criteria is met  

(c) Update structural elements  
(d) Repeat until some criteria is met  

Table 1 summarizes the nature of these procedures for typical 
machine learning approaches. Note that the LCS approach is the 
only scheme that typically treats the structural learning problem, 
but also note that the genetic learning paradigm can and has been 
applied for structural learning in each of the other listed schemes.  

 
Approach  Structural 

Elements  
Parameters Active 

Structural 
Elements  

Determination of 
Candidate 
Solution  

Parameter 
Update  

Structural 
Update  

Neural Networks Nodes and 
Connections 

Weights  Hidden layer 
nodes with 
significant 

output  

Summation at 
output nodes  

Backpropagation None  

Bayesian 
Networks  

Node per event, 
connections for 

dependent 
events  

Conditional 
Probabilities 

Events with 
significant a 

posteriori 
probability  

Maximum 
Likelihood 
Estimation  

Conditional 
probability update 

from data  
None  

Rule-based 
systems  

Rules  Conflict 
Resolution 
Parameters 

Matched 
Rules  

Conflict resolution Conflict resolution 
parameters for 

each rule  
None  

Decision Trees Nodes  Thresholds for 
splitting on 

data attributes 

Active node  Class at active node Threshold update Greedy 
addition of 

nodes  
Function 

approximation 
(kernel methods, 

etc.)  

Basis set  Coefficients Basis 
functions with 

significant 
output  

Weighted 
Summation  

Weight update Arbitrary 
truncation  

Learning 
Classifier 
Systems  

Generalized 
Rules  

Performance 
Parameters 

Matched 
Rules  

Conflict resolution 
(or summation) on 

performance 
parameters  

Performance 
Parameter Updates 

Genetic 
Learning  

Table 1: Typical structural and parameter learning step 
details in typical, training-data-driven schemes. 
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3. LCS Based ATR 
This section describes the LCS based ATR system developed 
during the course of this work. It also describes the features used 
by the LCS.  An overview of the classification algorithm is shown 
in Figure 2. The training data, represented as < condition >  
< action >  pairs are used by the XCS to generate classification 
rules. These rules are then used to match testing data and classify 
them accordingly into one of the candidate targets.  
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Figure 2: Overview of classification algorithm using XCS 

In our work we have used the freely available XCS software from 
the Illinois Genetic Algorithms Laboratory [20] and tailored it to 
our particular application. Examples using the XCS to generate 
classification rules are shown in the following section.  

3.1 Feature Representation 
In this section we describe the features we use to describe the 
objects of interest within our Learning Classifier System. We want 
these features to not only represent the objects of interest 
concisely, but also to possess sufficient descriptive capabilities to 
allow the LCS to generalize over this feature space. We chose 
three types of features, a combination of both global and local 
features, including features based on the coefficients from 
Principal Component Analysis (PCA), region-based spatial 
features, and scattering-center-based features.  

3.1.1 Global Features 
PCA-based coefficients were chosen as global features to capture 
information from across the whole image. PCA is a well 
documented technique [5][6] that draws from the Karhunen-
Loève expansion and is based on the concept that high-
dimensional data can be succinctly described with a low-
dimensional feature vector by projecting the data onto its 
principal components.  For classification, PCA computes a 
projection matrix based on all the training data. This projection 
matrix is then used in the testing phase to compute a set of 
coefficients used for classification in conjunction with a selected 
distance metric. In our work, when using PCA alone for 
classification, these coefficients are used with the Mahalanobis 
distance metric [5,6] defined as:  

( ) ( )1T
k k K kd c c c c−= − −S  

where KS  is the covariance of the weights from class k.. When 
using XCS as a classifier, the inputs are the differences, dij, 
between the distance of a test sample from the training classes, i 
and j, rather than the coefficients themselves.   
Figure 3 shows the discrimination obtained using PCA between 
two classes, SAM and tank.  
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Figure 3: Scatter plot of two targets in PCA-based, distance-

from-class space. 
The feature space shown is the distance of the test samples from 
each of the classes based on their PCA coefficients. One can see 
that the distance, d1, of the tank testing samples to the tank 
training class is, in general, small when compared to the same 
distance computed for the SAM testing samples. Similarly, the 
distance d2 is, in general, smaller for the SAM testing samples 
than for the tank testing samples. 

3.1.2 Spatial features 
Spatial features capture information pertinent to the object. We 
derive parameters for the spatial features by segmenting the image 
and then computing the area, bounding box axis ratio, and extent. 
Examples of the segmentation for two target chips, a T-72 and a 
ZSU-23-4, are shown in Figure 4.  

Median Filtering
Segmentation and

Morphological
Processing

Peak and
Feature Extraction

Raw
Data Features

T-72

ZSU-23-4

 
Figure 4: Segmentation and extraction of dominant scatterers 

in SAR image. Examples are shown for a T-72 tank and  
ZSU-23-4 anti-aircraft gun. 

Both these images are collected at a depression angle of 15 
degrees. The figures also show bounding boxes around the targets.  
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Figure 5 shows a scatter plot for three targets, the T-72 tank, 
ZSU-23-4 anti-aircraft gun and the BRDM-2 recon vehicle.  
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Figure 5: Scatter plot of three targets in Area-Axis Ratio 

feature space. 
The data samples are plotted in (Area, Axis Ratio) feature space. 
Although there is not much separation between the T-72 and 
ZSU-23-4, the BRDM-2 is well separated from both the T-72 and 
ZSU-23-4. This suggests the benefits of using these spatial 
features in the classifier system.  

3.1.3 Intensity Features 
Whereas spatial features captured the spatial extent of the object, 
intensity features capture the localized intensity as represented by 
the dominant scatterers in the SAR image.  
The properties that we encode are the relative location of the 
dominant scatters in different targets, that is, we encode whether 
the most dominant scatterers are “close together” or “far apart”. 
We also encode the relative magnitudes of the scatterers for 
various targets.  
The steps followed in extracting this information are shown in 
Figure 4. The first significant step is segmentation of the image 
chip (as described in Section 3.1.2) in order to determine the 
extent of the potential target. A peak extraction algorithm is then 
employed (only on the target region of the image) in order to 
extract the dominant scatterers. Examples of this processing 
shown in Figure 3 for the T-72 and ZSU-23-4 target chips. The 
scattering center peaks found from the peak extraction algorithm 
are indicated by the white ‘’s overlaid on the original SAR 
image. Statistics are then obtained for these scatterers. We are 
currently using the following statistics: The mean ( aµ ) and 

variance ( aσ ) of the peak amplitudes, and the mean ( distµ ) and 

variance ( distσ ) of the distance of the peak locations from the 
center of the target.  
 Although Figure 4 shows the dominant scatterers for two targets, 
these images by themselves do not indicate any discrimination 
between the targets based on the peak statistics. Figure 6 shows a 
scatter plot for three targets, the T-72 tank, ZSU-23-4 anti-aircraft 
gun and the BRDM-2 recon vehicle.  
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Figure 6: Scatter plot of three targets from Figure 5 in  

( aµ , distσ ) feature space 

The targets are shown in a two-dimensional feature space 
corresponding to the (i) mean of the magnitude of the peak ( aµ ) 

and (ii) the variance of the location of the peak ( )distσ . The T-
72’s are represented by the “*”, the ZSU-23-4’s by the “o” and 
the BRDM-2’s by the “+”. One can clearly see that these features 
do provide a significant level of discrimination. Note that the T-
72 and ZSU-23-4 that were not separated by the spatial features in 
Figure 5 are now separated to a large extent. This shows that the 
spatial features and scatterer-based features have the potential to 
compliment each other.  

3.2 Baseline for Comparison 
We compare our LCS-ATR results to two baselines. One is based 
on the MSE classifier the other is a “distance”-based classifier.  

3.2.1 MSE Classifier 
One of the baseline classification algorithms used to assess the 
performance of XCS is based on the mean square error (MSE) 
metric [14]. The MSE classifier metric is used to calculate 
distances to a template of a known target and a testing sample is 
then assigned to the class represented by the template to which the 
test sample has minimum distance. The MSE metric is computed 
as follows:  

2

1MSE 1

t
n

n t t
n n

n
n

x
x x

µρ
µ µ

ρ

=

= −

r r

r r r r

 

where xr  is the “vectorized test chip” (image), nµr  is the 

vectorized mean template for the class n target, nρ  is the 

correlation between xr  and nµr , and MSEn is a measure of 
distance to class n.  
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3.2.2 Distance Classifier 
The PCA results in coefficients as features sets. Once we compute 
these features sets, we need tools to classify them. Typically, 
various distance measures are used. We use the Mahalanobis 
Distance.  
As a preliminary illustration of the structural generalization that 
XCS can afford over-and-above the features made available by 
distance classification, see Figure 7. 
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Figure 7: Overall classification rate for two simulated SAR 

targets versus number of PCA coefficients for a Mahalanobis 
distance based classifier and an XCS that generalizes over 

distances from PCA prototypes. 
 
In this case, distances from the two PCA prototypes are used as a 
feature for the LCS, encoded as six bits for each distance. Results 
show that the generalization ability of the XCS sustains 
classification performance as the dimensionality of the prototype 
space is lowered. It is this generalization ability that we hope to 
exploit in larger feature spaces, to extend normal classification 
performance with these features beyond SOCs into EOCs. EOC 
results are presented in the following sections. 

4. Test and Evaluation 
This section describes the results of applying the LCS-based ATR 
system as shown in Figure 2 to one standard operating condition 
(SOC) and a number of extended operating conditions (EOCs). 
Note that there is an intentional departure from typical training 
and testing procedures. In the EOC cases, we are intentionally 
attempting to generalize for unforeseen cases. Therefore, we will 
be testing on conditions that are not in the training set. This places 
a premium on obtaining structural generalizations from the 
training data that transfer themselves effectively to the unforeseen 
testing conditions. In general, a SOC refers to training sets and 
testing sets that are similar, and an EOC refers to training sets and 
testing sets that are variant.  
In context of SAR ATR, the EOCs arise from target, sensor, and 
environmental variations. Target related variations include serial 
number, version, configuration, articulation, sensor or acquisition 

related variations include depression angle and aspect angle, and 
environment related variations include background types, 
atmospheric effects, obscuration, camouflage, deception [11][14].  
The SAR data used in this project is from the DARPA-sponsored 
MSTAR program’s public distribution. This is real SAR data. For 
the results presented in this paper, the EOCs were chosen 
depending on those available in the MSTAR Public Release target 
set. These included target-related variations (serial number, 
articulation) and sensor or acquisition-related variations 
(depression angle, aspect angle).  
In the results that follow, we begin with performance for nominal 
conditions (Section 4.1) and then describe the results for a 
number of EOCs that include serial number (Section 4.2), aspect 
angle (Section 4.3), depression angle (Section 4.4), and 
articulation (Section 4.5).  
For each case, we first describe the SAR data used for training 
and testing and then present the classification results using a 
confusion matrix. Along with the classification results for the 
machine learning based ATR system, we also present the results 
for MSE classifier (Section 3.2.1) and a distance classifier that 
uses PCA coefficients as features (Section 3.2.2) as baselines for 
comparison. In describing the results, we will comment on the 
accuracy, the performance on the training set and the robustness 
the performance on the testing set.  

4.1 Nominal conditions 
In this section we investigate the performance of the XCS under 
nominal conditions with multiple targets. In order to do so, we 
design an experiment with 4 targets. The targets under training 
and testing scenarios are shown in Table 2. One can see that in 
this case, the training data is very similar to the testing data, in 
that they are both acquired at depression angles of 15 degrees, 
contain data samples at all aspect angles, and have the same 
articulation and serial numbers.  
 

 Training Data Testing Data 
Target Depression 

Angle  
No. of 

samples  
Depression 

Angle  
No. of 

samples  
T-72  15 degrees  100  15 degrees  100   

ZSU-23-
4  

15 degrees  100  15 degrees  100   

2S1  15 degrees  100  15 degrees  100   
BRDM-

2  
15 degrees  100  15 degrees  100   

Table 2: Training and Testing dataset for nominal conditions. 
 
The percentage of correctly classified targets obtained using the 
MSE classifier, PCA distance classifier and XCS are shown in 
Table 3. We use the MSE classifier and PCA distance classifier as 
baselines and compare the XCS results to them. The results are 
shown in the form of a confusion matrix with each entry showing 
how many of the samples from the target indicated by row label 
are classified as the target indicated by the column label.  

1807



 MSE training MSE testing 
 T-72 ZSU 2S

1  
BRD

M  
T-72 ZSU 2S

1  
BRD

M  
T-72  82  2  12  4  79  2  10  9  
ZSU  12  86  1  1  24  74  1  1  
2S1  5  10  67  18  6  18  58  18  

BRD
M  

0  0  24  76  1  1  27  71  

 PCA training PCA testing 
T-72  94  1  5  0  86  8  6  0  
ZSU  1  99  0  0  1  99  0  0  
2S1  2  3  95  0  0  14  86  0  

BRD
M  

2  7  11  80  5  11  23  61  

 XCS training XCS testing 
T-72  100 0  0  0   92  3  5  0   
ZSU  3  96  1  0   5  88  6  1   
2S1  0  0  100 0   3  1  94  2   

BRD
M  

0  0  0  100  2  1  9  88  

Table 3: Classification rates (as % of total samples) under 
nominal conditions 

As expected, the PCA and XCS classifiers perform well on the 
training set. We will mainly discuss the results on the testing set, 
since these results are true indicators of accuracy and robustness 
of the classifier. For the testing set, one can see that most of the 
targets are correctly classified by the PCA and XCS, which both 
outperform MSE. However, XCS outperforms PCA by a 
significant margin on three of the four targets, most noticeably on 
the BRDM-2. The overall rates of correct classification are: MSE 
= 70.5%, PCA = 83% and XCS = 90%.  

4.2 EOC: Serial number 
The MSTAR dataset includes the same type of target with data 
collected from different serial numbers. In this experiment, we are 
attempting to make a first generalization over the serial number 
EOC. The, we train the XCS using one serial number from each 
target and test on a different serial number. The training and 
testing data are described in Table 4.  

 Training Data Testing Data 
Target Serial 

No.  
Dep. 

Angle  
Samples Serial 

No.  
Dep. 

Angle  
Samples

T-72  Sn132  15 degrees 200  Sn812  15 degrees 200   
BMP-

2  
Sn9563  15 degrees 200  Sn9566  15 degrees 200   

Table 4: Training and Testing dataset for serial number EOC 
condition 

Table 5 shows the classification results using both PCA and XCS. 
PCA seems to have trouble correctly classifying the BMP-2 even 
in the training data, while XCS perfectly classifies all the training 
samples. On the testing set, while the XCS and PCA each seem to 
favor different targets, overall the XCS performs better than PCA. 
Both these classifiers outperform the baseline MSE classifier. 
Overall, the rates of correct classification are: MSE = 69.75%, 
PCA = 81% and XCS = 85.5%.  

 MSE trainingPCA training XCS training
 T-72 BMP-2 T-72 BMP-2 T-72 BMP-2 

T-72 83 17  99  1  100 0   
BMP-

2  
22.5 77.5  17  83  0  100  

 MSE testing PCA testing XCS testing
T-72 65 35  89.5 10.5  80.5 19.5  

BMP-
2  

25.5 74.5  27.5 72.5  9.5 90.5  

Table 5: Classification rates (as % of total samples) under the 
serial number EOC 

4.3 EOC: Aspect angle 
In this experiment we test the robustness of the classifiers to 
varying target acquisition aspect angle. In all data files in the 
MSTAR database, a target is acquired from a number of aspect 
angles from 0 degrees to 360 degrees. As shown in Table 6, in this 
experiment we train the classifiers on data collected with aspect 
angles between 0 degrees and 180 degrees and test the classifiers 
on aspect angles between 180 degrees and 360 degrees. Four 
targets are used, namely, T-72, ZSU-23-4, 2S1 and BRDM-2.  

 Training Data Testing Data 
Target Aspects  Dep. 

Angle 
Samples Aspects  Dep. 

Angle  
Samples

T-72  0 degrees -
180 degrees

15 
degrees 

100  180 degrees -
360 degrees  

15 degrees 100   

ZSU-
23-4  

0 degrees -
180 degrees

15 
degrees 

100  180 degrees -
360 degrees  

15 degrees 100   

2S1  0 degrees -
180 degrees

15 
degrees 

100  180 degrees -
360 degrees  

15 degrees 100   

BRDM-
2  

0 degrees -
180 degrees

15 
degrees 

100  180 degrees -
360 degrees  

15[degrees 100   

Table 6: Training and Testing dataset for the aspect angle 
EOC 

Table 7 shows the classification results. The MSE baseline seems 
to perform particularly poorly on most targets in this EOC. On the 
testing data, the performance of PCA and XCS is similar on the T-
72, ZSU-23-4 and 2S1 targets. However, on the BRDM-2, XCS 
has a significantly better classification rate. Overall, XCS’s 
classification rate of 85% compares favorably with PCA’s 
classification rate of 80.75 %.  

 MSE training PCA training XCS training 
 T-72 ZSU 2S

1 
BRD

M  
T-72 ZSU 2S

1  
BRD

M  
T72 ZSU 2S

1 
BRD

M   
T-72 86 1 13 0  97  2  1  0  99 0 1 0   
ZSU 14 85 0 1  0 100 0  0  0 97 0 3   
2S1 2 3 87 8  0 1  99  0  0 0 100 0   

BRD
M  

1 0 20 79  1 2  8  89  0 0 0 100  

 MSE testing PCA testing XCS testing 
T-72 36 1 0 63  87  5  8  0  89 3 8 0  
ZSU 26 52 16 6  0 100 0  0  1 97 2 0  
2S1 17 16 38 29  11  8  81  0  14 7 77 2  

BRD
M  

16 3 1 80  7 17  21  55  3 7 11 77  

Table 7: Classification rates (as % of total samples) under the 
aspect angle EOC. 

1808



4.4 EOC: Depression angle 
In this experiment we consider another acquisition-related EOC - 
the depression angle of target with respect to the sensor. The 
MSTAR database contains data from five targets at depression 
angles of 15 degrees, 17 degrees, 30 degrees and 45 degrees. In 
this section, four targets are considered as shown in Table 8. The 
data at 15 degrees is used to train the classifiers and testing is 
carried out on the data collected at 30 degrees.  

 Training Data Testing Data 
Target  Dep. 

Angle  
Samples Depression 

Angle  
Samples

T-72  15 degrees 100  30 degrees  100  
ZSU-23-4 15 degrees 100  30 degrees  100  

2S1  15 degrees 100  30 degrees  100  
BRDM-2 15 degrees 100  30 degrees  100  

Table 8: Training and testing dataset for depression angle 
EOC 

The classification results of Table 9 show that PCA outperforms 
the XCS on the two targets - the ZSU-23-4 and the 2S1. However, 
the difference in classification rates for the BRDM-2 is quite large 
and is in favor of XCS. This in fact leads to an overall higher 
classification rate for XCS by 1.5%. Overall, the rates of correct 
classification are: MSE = 52.25%, PCA = 71.5% and XCS = 
73%.  

 MSE training PCA training XCS training 
 T-72 ZSU 2S

1  
BRD

M  
T-72 ZSU 2S

1  
BRD

M  
T72 ZSU 2S

1 
BRD

M   
T-72  82  2  12  4 94  1  5  0  100 0 0 0   
ZSU  12  86  1  1  1  99  0  0  2  98 0 0   
2S1  5  10  67  18  2  3  95  0  0  0 100 0   

BRD
M  

0  0  24  76  2  7  11  80  0  0 0 100  

 MSE testing PCA testing XCS testing 
T-72  53  2  18  27  71  9  20  0  77 6 13 4  
ZSU  14  56  17  13  7  71  22  0  23 57 16 4  
2S1  1  10  59  30  1  7  92  0  8 2 81 9   

BRD
M  

0  0  19  41  10  2  36  52  9 0 14 77  

Table 9: Classification rates (as % of total samples) for the 
depression angle EOC. 

4.5 EOC: Articulation 
The MSTAR database has data for three targets under nominal 
and articulated conditions. In this experiment, we train the 
classifiers under nominal conditions and test under articulated 
conditions (Table 10).  

 Training Data Testing Data 
Target Articulation Dep. 

Angle  
Samples Articulation  Dep. 

Angle 
Samples

T-72  nominal  30 
degrees  

100  articulated  30 
degrees

100   

ZSU-
23-4  

nominal  30 
degrees  

100  articulated  30 
degrees

100   

BRDM-
2  

nominal  30 
degrees  

100  articulated  30 
degrees

100   

Table 10: Training and Testing dataset for the aspect 
articulated EOC. 

The classification results, presented in Table 11, show that the 
PCA almost entirely mis-classifies the BRDM-2 samples. The 
XCS however shows considerable improvement over the PCA and 
correctly classifies 40 % of the BRDM-2 samples in testing set. 
However, for this particular target, the MSE outperforms both the 
XCS and PCA. MSE, in fact, performs surprisingly well in this 
experiment. However, XCS does significantly outperform the 
MSE on T-72 and ZSU-23-4, which is encouraging. For the 
BRDM-2, we believe the classification results for the XCS are 
affected by its use of the PCA-based features. This is indicated by 
the complete misclassification of the BRDM-2 by the PCA 
classifier. Although XCS turns off some of these features, it is 
unable to completely ignore them. The overall classification rates 
are : MSE = 76 %, PCA = 61.33 % and XCS = 74.67%.  

 MSE training PCA training XCS training 

 T-72 ZSU BRDM T-72 ZSU BRDM T-72 ZSU BRDM 

T-72 91 8 1  98  2  0  100 0 0   

ZSU 19 81 0  0  100 0  0 99 1   

BRDM 1 2 97  6  25  69  0 0 100  

 MSE testing PCA testing XCS testing 

T-72 74 25 1  85  15  0  87 13 0  

ZSU 20 80 0  2  98  0  3 97 0  

BRDM 9 17 74  14  85  1  6 54 40  

Table 11: Classification rates (as % of total samples) for the 
articulation EOC. 

4.6 Results Summary 
The overall results for each ATR system (MSE,PCA, and XCS) 
applied to nominal conditions and EOCs are shown in Table 12. 
Results show that the XCS’s generalizations are consistently 
effective in extending the utilization of the features we have used 
to the EOCs.  Since strong generalization is the only hope for 
effectively coping with EOCs (which are unforeseen, by 
definition), this indicates the promise of XCS in this ATR 
domain. 

 MSE  PCA  XCS  
Nominal  70.5  83  90   

Serial EOC  69.75 81  85.5  
Aspect EOC  51.5  80.75 85   

Depression EOC  52.25 71.5  73   
Articulation EOC  76  61.33 74.67  

Table 12: Summary of Testing Classification Rates. 

5. Summary, Conclusions, and Future Work 
The primary innovation of this work is the development of an 
automated way of developing heuristic inference rules that can 
draw on multiple models and multiple feature types to make more 
robust ATR decisions. This system was tested on MSTAR Public 
Release SAR data using nominal and extended operation 
conditions. These results were also compared against two baseline 
classifiers, a PCA-based distance classifier and a MSE classifier.  
In the experiments presented here, the LCS-based ATR system 
generally exhibited performance with higher accuracy (in most 
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cases 99%) and better robustness (in most cases over 80%). By 
exploiting XCS’s ability to generalize, we are able to show results 
that effective on SOCs (for which the system was trained) and 
EOCs (for which no training data was presented). This 
generalization is key for robust ATR in the field. 
Future areas for investigation include further test and evaluation, 
particularly with more targets and EOCs. This work presented 
results based on the MSTAR public release data. Our next step is 
to expand this to include all the MSTAR data, resulting in a larger 
number of targets, target types, and EOCs.  
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